工学 >>> 电子科学与技术 >>> 电子技术 光电子学与激光技术 半导体技术 电子科学与技术其他学科
搜索结果: 1-14 共查到电子科学与技术 UKF相关记录14条 . 查询时间(0.015 秒)
针对光学捷联导引头刻度尺误差带来的隔离度问题,提出了一种基于无迹卡尔曼滤波(UKF)的刻度尺误差实时补偿方法.分析了刻度尺误差引起隔离度问题的机理,由弹目相对运动方程以及光学捷联导引头量测方程建立了考虑刻度尺误差影响的非线性滤波模型,采用UKF滤波算法,对刻度尺系数进行估计,并用所提出的补偿方法进行实时补偿,最后进行了数学仿真及半实物仿真验证.仿真结果表明:所提方法能够有效地估计出刻度尺系数,经补...
为了提高再入段目标跟踪的精度,将平方根不敏卡尔曼滤波(unscented Kalman filter, UKF)算法与多传感器分布式融合算法相结合,提出了基于平方根UKF的多传感器融合跟踪算法。在各个独立的传感器中利用平方根UKF滤波器进行状态估计,然后通过分布式融合方法融合各传感器的状态估计值得到全局的状态估计值和误差协方差,将全局误差协方差进行加权对各传感器进行分配更新。通过仿真验证,基于平方...
在扩展卡尔曼滤波算法(Extended Kalman Filter,EKF)和不敏卡尔曼滤波算法(Unscented Kalman Filter,UKF)的基础上,提出一种基于融合的粒子滤波算法(Fusion based particle filter, FPF)。该算法首先利用EKFUKF 分别预测粒子状态,然后通过融合算法得到粒子的重要性建议分布,实现粒子状态更新。因为充分利用了量测信息,...
为实现被动测角目标状态和数目的实时估计,在高斯混合粒子(Gaussian mixture particle, GMP)的势化概率假设密度(cardinalized probability hypothesis density, CPHD) 滤波框架下,提出了基于抗“飞点”无迹卡尔曼滤波器(unscented Kalman filter, UKF)的GMPCPHD滤波算法,即抗“飞点”的UKFGM...
针对广义卡尔曼滤波(extended Kalman filter, EKF)和无迹卡尔曼滤波(unscented Kalman filter, UKF)缺乏对系统异常的在线自适应调整能力、导致滤波器精度降低的问题,提出了一种将强跟踪滤波(strong tracking filter, STF)和UKF相结合的滤波算法,并进一步采用部分状态信息作为间接观测量,同时量测噪声方差阵实时调整,从而避免了对...
在较大初始姿态误差角下,针对SINS/GPS紧组合导航系统扩展卡尔曼滤波(extenthed Kalman filter, EKF)算法定位精度下降的问题,提出了一种基于四元数的平方根无迹卡尔曼滤波(square root unscented Kalman filter, SRUKF)算法。为解决SRUKF算法中四元数正交规范化的限制,通过构造姿态矩阵代价函数将四元数预测均值问题转化为代价函数最小...
主动段目标的分级与关机识别对于系统把握目标模型切换并部署后续跟踪具有重要意义。建立了主动段目标的分级和关机所涉及的两级主动段模型和中段模型;引入了交互式多模型框架以应对不确定模式下的跟踪问题,引入了无迹卡尔曼滤波以解决非线性估计问题。在天基观测条件下进行了仿真实验,结果表明,利用模型概率和总体估计误差的异常变化,可有效识别主动段目标的分级和关机。
提出了一种新的滤波算法,以加快滤波算法的收敛速度和提高滤波的估计精度。反向预测与更新提高了上一时刻状态估计的精度,减小了当前时刻的状态预测误差。利用更准确的初始条件经过正向预测与更新,能得到当前状态更精确的估计值。计算机仿真结果表明,本算法的滤波性能优于传统的迭代滤波算法,既提高了滤波的估计精度,又加快了算法的收敛速度。
针对传统的滤波方法容易受系统动态模型不确定性和噪声协方差不准确的限制这一问题,提出一种将高斯过程回归融入平方根不敏卡尔曼滤波(unscented Kalam filter,UKF)算法中的滤波算法。该算法用高斯过程对训练数据进行学习,得到动态系统的回归模型及系统噪声的协方差;采用标准的平方根UKF算法,状态方程和观测方程,相应的噪声协方差由高斯过程实时自适应调整。将应用于飞行器SINS/GPS组合...
在较大初始姿态误差角下,针对SINS/GPS紧组合导航系统扩展卡尔曼滤波(extenthed Kalman filter, EKF)算法定位精度下降的问题,提出了一种基于四元数的平方根无迹卡尔曼滤波(square root unscented Kalman filter, SRUKF)算法。为解决SRUKF算法中四元数正交规范化的限制,通过构造姿态矩阵代价函数将四元数预测均值问题转化为代价函数最小...
针对传统的间接法卡尔曼滤波在北斗/捷联惯导(serial inertial navigation system, SINS)组合导航系统中无法实现较高的定位精度且计算的冗余度大的缺点,提出一种基于无迹卡尔曼滤波(unscented Kalman filter, UKF)的新型组合系统滤波算法。本算法以SINS输出的导航参数及平台误差角等作为系统状态,无源北斗输出的位置速度参数作为量测,采用改进的U...
在空中对准失准角不满足小角度假设的条件下,推导了一种新的机载INS/GPS大失准角空中对准的误差模型。将基于极大似然估计的自适应估计器与无迹卡尔曼滤波(unscented Kalman filter, UKF)算法相结合,修改自适应滤波算法中自适应参数的表达式。提出将自适应UKF算法用于非线性误差模型的空中对准方案中。仿真表明,自适应UKF算法能够克服噪声统计模型不准确对滤波结果的影响,失准角估计...
针对中远程弹道导弹的特点,在分析研究捷联惯性导航系统/天文导航系统(strapdown inertial navigation system/celestial navigation system, SINS/CNS)组合导航测量修正方案的基础上,建立了导弹四元数运动学方程、陀螺测量模型,星敏感器测量模型等系统方程,将无轨迹卡尔曼滤波(unscented Kalman filter, UKF)算法...
如何生成最优的模糊规则数及模糊规则的自动生成和修剪是模糊神经网络训练算法研究的重点,针对这一问题,提出了基于无迹卡尔曼滤波(unscented Kalman filter, UKF)的自组织模糊神经网络的训练算法。分析了模糊神经网络的非线性动力系统表示,并用递推最小二乘法(recursive least square, RLS)和UKF分别学习线性和非线性的参数,给出了模糊规则生成的准则和参数更新...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...